Statistical Simulations on Perceptron-Based Adders

نویسندگان

  • Snorre Aunet
  • Hans Kristian Otnes Berge
چکیده

In this article we compare a number of full-adder (1bit addition) cells regarding minimum supply voltage and yield, when taking statistical simulations into account. According to the ITRS Roadmap two of the most important challenges for future nanoelectronics design are reducing power consumption and increasing manufacturability (ITRS, 2005). We use subthreshold CMOS, which is regarded by many as the most promising ultra low power circuit technique. It is also shown that a minimum redundancyfactor as low as 2 is sufficient to make circuits maintain full functionality under the presence of defects. This is, to our knowledge, the lowest redundancy reported for comparable circuits, and builds on a method suggested a few years ago (Aunet & Hartmann, 2003). A standard Full-Adder (FA) and an FA based on perceptrons exploiting the “mirrored gate”, implemented in a standard 90 nm CMOS technology, are shown not to withstand statistical mismatch and process variations for supply voltages below 150 mV. Exploiting a redundancy scheme tolerating “open” faults, with gate-level redundancy and shorted outputs, shows that the same two FAs might produce adequate Sum and Carry outputs at the presence of a defect PMOS for supply voltages above 150 mV, for a redundancy factor of 2 (Aunet & Otnes Berge, 2007). Two additional perceptrons do not tolerate the process variations, according to simulations. Simulations suggest that the standard FA has the lowest power consumption. Power consumption varies more than an order of magnitude for all subthreshold FAs, due to the statistical variations. BACKGROUND

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New full adders using multi-layer perceptron network

How to reconfigure a logic gate for a variety of functions is an interesting topic. In this paper, a different method of designing logic gates are proposed. Initially, due to the training ability of the multilayer perceptron neural network, it was used to create a new type of logic and full adder gates. In this method, the perceptron network was trained and then tested. This network was 100% ac...

متن کامل

Ultra Low-Power Neural Inspired Addition: When Serial Might Outperform Parallel Architectures

In this paper we analyse a serial (ripple carry) and a parallel (Kogge-Stone) adder when operating in subthreshold at 100nm and 70nm. These are targeted for ultra low power consumption applications. The elementary gates used are threshold logic gates (perceptrons). Simulations have been performed both with and without considering the delay on the wires. These simulations confirm that wires play...

متن کامل

Revisiting the Perceptron Predictor Again

We introduce a new kind of branch predictor, the hashed perceptron predictor, which merges the concepts behind the gshare and perceptron branch predictors. This is done by fetching the perceptron weights using the exclusive-or of branch addresses and branch history. This predictor can achieve superior accuracy to a path-based and a global perceptron predictor, previously the most accurate fully...

متن کامل

Variable delay ripple carry adder with carry chain interrupt detection

Various implementations are known for the efficient implementation of adders. As opposed to traditional optimization techniques a statistical approach using early termination detection is used in this article to obtain efficient implementations for large operands. The completion detection logic is described and the efficiency of the approach is shown and analyzed analytically and through comput...

متن کامل

A Low Power Full Adder Cell based on Carbon Nanotube FET for Arithmetic Units

In this paper, a full adder cell based on majority function using Carbon-Nanotube Field-Effect Transistor (CNFET) technology is presented. CNFETs possess considerable features that lead to their wide usage in digital circuits design. For the design of the cell input capacitors and inverters are used. These kinds of design method cause a high degree of regularity and simplicity. The proposed des...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009